• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Improved Poincaré inequalities

Volzone, Bruno; Dolbeault, Jean (2012), Improved Poincaré inequalities, Nonlinear Analysis: Theory, Methods & Applications, 75, 16, p. 5985–6001. http://dx.doi.org/10.1016/j.na.2012.05.008

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00638281/fr/
Date
2012
Journal name
Nonlinear Analysis: Theory, Methods & Applications
Volume
75
Number
16
Publisher
Elsevier
Pages
5985–6001
Publication identifier
http://dx.doi.org/10.1016/j.na.2012.05.008
Metadata
Show full item record
Author(s)
Volzone, Bruno
Dolbeault, Jean cc
Abstract (EN)
Although the Hardy inequality corresponding to one quadratic singularity, with optimal constant, does not admit any extremal function, it is well known that such a potential can be improved, in the sense that a positive term can be added to the quadratic singularity without violating the inequality, and even a whole asymptotic expansion can be build, with optimal constants for each term. This phenomenon has not been much studied for other inequalities. Our purpose is to prove that it also holds for the gaussian Poincaré inequality. The method is based on a recursion formula, which allows to identify the optimal constants in the asymptotic expansion, order by order. We also apply the same strategy to a family of Hardy-Poincaré inequalities which interpolate between Hardy and gaussian Poincaré inequalities.
Subjects / Keywords
Weighted norms; Remainder terms; Best constant; Poincaré inequality; Hardy inequality

Related items

Showing items related by title and author.

  • Thumbnail
    From Poincaré to logarithmic Sobolev inequalities: a gradient flow approach 
    Savaré, Giuseppe; Nazaret, Bruno; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Interpolation between logarithmic Sobolev and Poincaré inequalities 
    Dolbeault, Jean; Bartier, Jean-Philippe; Arnold, Anton (2007) Article accepté pour publication ou publié
  • Thumbnail
    Hardy-Poincaré inequalities and applications to nonlinear diffusions 
    Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
  • Thumbnail
    Improved interpolation inequalities and stability 
    Dolbeault, Jean; Esteban, Maria J. (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo