• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • Chaires d'entreprise
  • Chaire Finance et développement durable - Approches quantitatives
  • View Item
  •   BIRD Home
  • Chaires d'entreprise
  • Chaire Finance et développement durable - Approches quantitatives
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

From infinity to one: The reduction of some mean field games to a global control problem

Guéant, Olivier (2011), From infinity to one: The reduction of some mean field games to a global control problem. https://basepub.dauphine.fr/handle/123456789/7389

View/Open
CAHIER_FDD_42.pdf (215.3Kb)
Type
Document de travail / Working paper
Date
2011
Publisher
Université Paris-Dauphine
Series title
Cahiers de la Chaire Finance et Développement Durable
Series number
42
Published in
Paris
Pages
13
Metadata
Show full item record
Author(s)
Guéant, Olivier
Abstract (EN)
This paper presents recent results from Mean Field Game theory underlying the introduction of common noise that imposes to incorporate the distribution of the agents as a state variable. Starting from the usual mean field games equations introduced in [11 , 12 , 13 ] and adapting them to games on graphs, we introduce a partial differential equation, often referred to as the Master equation (see [14]), from which the MFG equations can be deduced. Then, this Master equation can be reinterpreted using a global control problem inducing the same behaviors as in the non-cooperative initial mean field game.
Subjects / Keywords
control problem; PDE; Mean field games theory
JEL
C72 - Noncooperative Games

Related items

Showing items related by title and author.

  • Thumbnail
    Application of Mean Field Games to Growth Theory 
    Lasry, Jean-Michel; Lions, Pierre-Louis; Guéant, Olivier (2008) Document de travail / Working paper
  • Thumbnail
    Some results on the McKean–Vlasov optimal control and mean field games : Limit theorems, dynamic programming principle and numerical approximations 
    Djete, Fabrice (2020-12-16) Thèse
  • Thumbnail
    Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system 
    Cannarsa, Piermarco; Capuani, Rossana; Cardaliaguet, Pierre (2021) Article accepté pour publication ou publié
  • Thumbnail
    Ergodic behavior of control systems and first-order mean field games 
    Mendico, Cristian (2021-11-05) Thèse
  • Thumbnail
    Convergence of some Mean Field Games systems to aggregation and flocking models 
    Bardi, Martino; Cardaliaguet, Pierre (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo