• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system

Haspot, Boris; Charve, Frédéric (2013), Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system, SIAM Journal on Mathematical Analysis, 45, 2, p. 469-494. http://dx.doi.org/10.1137/120861801

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00635983/fr/
Date
2013
Journal name
SIAM Journal on Mathematical Analysis
Volume
45
Number
2
Publisher
SIAM
Pages
469-494
Publication identifier
http://dx.doi.org/10.1137/120861801
Metadata
Show full item record
Author(s)
Haspot, Boris
Charve, Frédéric
Abstract (EN)
In the first part of this paper, we prove the existence of global strong solution for Korteweg system in one dimension. In the second part, motivated by the processes of vanishing capillarity-viscosity limit in order to select the physically relevant solutions for a hyperbolic system, we show that the global strong solution of the Korteweg system converges in the case of a $\gamma$ law for the pressure ($P(\rho)=a\rho^{\gamma}$, $\gamma>1$) to entropic solution of the compressible Euler equations. In particular it justifies that the Korteweg system is suitable for selecting the physical solutions in the case where the Euler system is strictly hyperbolic. The problem remains open for a Van der Waals pressure because in this case the system is not strictly hyperbolic and in particular the classical theory of Lax and Glimm (see \cite{Lax,G}) can not be used.
Subjects / Keywords
Korteweg system; strong solution; vanishing capillarity-viscosity; compressible Euler system

Related items

Showing items related by title and author.

  • Thumbnail
    Vanishing capillarity limit of the Navier-Stokes-Korteweg system in one dimension with degenerate viscosity coefficient and discontinuous initial density 
    Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solution for Korteweg system in one dimension for strongly degenerate viscosity coefficients 
    Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension 
    Haspot, Boris (2013) Article accepté pour publication ou publié
  • Thumbnail
    New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension 
    Burtea, Cosmin; Haspot, Boris (2020) Article accepté pour publication ou publié
  • Thumbnail
    Existence of strong solutions in a larger space for the shallow-water system 
    Haspot, Boris; Charve, Frédéric (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo