Improved Sobolev's inequalities, relative entropy and fast diffusion equations
Toscani, Giuseppe; Dolbeault, Jean (2011), Improved Sobolev's inequalities, relative entropy and fast diffusion equations. https://basepub.dauphine.fr/handle/123456789/7340
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00634852/fr/Date
2011Publisher
Université Paris-Dauphine
Published in
Paris
Pages
28
Metadata
Show full item recordAbstract (EN)
The difference of the two terms in Sobolev's inequality (with optimal constant) measures a distance to the manifold of the optimal functions. We give an explicit estimate of the remainder term and establish an improved inequality, with explicit norms and fully detailed constants. Our approach is based on nonlinear evolution equations and improved entropy - entropy production estimates along the associated flow. Optimizing a relative entropy functional with respect to a scaling parameter, or handling properly second moment estimates, turns out to be the central technical issue. This is a new method in the theory of nonlinear evolution equations, which also applies to other interpolation inequalities of Gagliardo-Nirenberg-Sobolev type.Subjects / Keywords
optimal constants; sharp rates; intermediate asymptotics; second moment; Barenblatt solutions; fast diffusion equation; entropy - entropy production method; manifold of optimal functions; improved inequalities; Gagliardo-Nirenberg-Sobolev inequalities; Sobolev's inequalityRelated items
Showing items related by title and author.
-
Toscani, Giuseppe; Dolbeault, Jean (2013) Article accepté pour publication ou publié
-
Toscani, Giuseppe; Dolbeault, Jean (2011) Article accepté pour publication ou publié
-
Dolbeault, Jean; Toscani, Giuseppe (2016) Article accepté pour publication ou publié
-
Dolbeault, Jean (2011-03) Article accepté pour publication ou publié
-
Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié