Show simple item record

hal.structure.identifierLaboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.authorLapert, Marc*
hal.structure.identifierLaboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.authorTehini, R.*
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorTurinici, Gabriel
HAL ID: 16
ORCID: 0000-0003-2713-006X
hal.structure.identifierLaboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
dc.contributor.authorSugny, Dominique*
dc.subjectSchrodinger equationen
dc.subjectquantum theoryen
dc.subjectquantum opticsen
dc.subjectFourier transformsen
dc.subjectconvergence of numerical methodsen
dc.titleMonotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control fielden
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversité de Bourgogne;France
dc.description.abstractenWe consider the optimal control of quantum systems interacting nonlinearly with an electromagnetic field. We propose monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a nonstandard choice of the cost, which is not quadratic in the field. These algorithms can be constructed for pure- and mixed-state quantum systems. The efficiency of the method is shown numerically for molecular orientation with a nonlinearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well approximated by pulses that could be implemented experimentally.en
dc.relation.isversionofjnlnamePhysical Review. A, Atomic, Molecular and Optical Physics
dc.relation.isversionofjnlpublisherAmerican Physical Societyen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record