• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field

Lapert, Marc; Tehini, R.; Turinici, Gabriel; Sugny, Dominique (2008), Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field, Physical Review. A, Atomic, Molecular and Optical Physics, 78, 2, p. 023408. http://dx.doi.org/10.1103/PhysRevA.78.023408

Type
Article accepté pour publication ou publié
Date
2008-02
Journal name
Physical Review. A, Atomic, Molecular and Optical Physics
Volume
78
Number
2
Publisher
American Physical Society
Pages
023408
Publication identifier
http://dx.doi.org/10.1103/PhysRevA.78.023408
Metadata
Show full item record
Author(s)
Lapert, Marc
Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
Tehini, R.
Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
Turinici, Gabriel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Sugny, Dominique
Laboratoire Interdisciplinaire Carnot de Bourgogne [ICB]
Abstract (EN)
We consider the optimal control of quantum systems interacting nonlinearly with an electromagnetic field. We propose monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a nonstandard choice of the cost, which is not quadratic in the field. These algorithms can be constructed for pure- and mixed-state quantum systems. The efficiency of the method is shown numerically for molecular orientation with a nonlinearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well approximated by pulses that could be implemented experimentally.
Subjects / Keywords
Schrodinger equation; quantum theory; quantum optics; Fourier transforms; convergence of numerical methods

Related items

Showing items related by title and author.

  • Thumbnail
    Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field 
    Lapert, Marc; Tehini, R.; Turinici, Gabriel; Sugny, Dominique (2009) Article accepté pour publication ou publié
  • Thumbnail
    Time-optimal monotonically convergent algorithm with an application to the control of spin systems 
    Sugny, Dominique; Lapert, Marc; Salomon, Julien (2012) Article accepté pour publication ou publié
  • Thumbnail
    Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion 
    Ohtsuki, Yukiyoshi; Teranishi, Yoshiaki; Saalfrank, Peter; Turinici, Gabriel; Rabitz, Herschel (2007) Article accepté pour publication ou publié
  • Thumbnail
    Discrete-valued-pulse optimal control algorithms: Application to spin systems 
    Dridi, G.; Lapert, Marc; Salomon, Julien; Glaser, Steffen J.; Sugny, Dominique (2015) Article accepté pour publication ou publié
  • Thumbnail
    Monotonically convergent algorithms for bounded quantum controls 
    Turinici, Gabriel (2003) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo