• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Quadratic functional estimation in inverse problems

Meziani, Katia; Butucea, Cristina (2011), Quadratic functional estimation in inverse problems, Statistical Methodology, 8, 1, p. 31-41. http://dx.doi.org/10.1016/j.stamet.2010.05.002

Type
Article accepté pour publication ou publié
Date
2011
Journal name
Statistical Methodology
Volume
8
Number
1
Publisher
Elsevier
Pages
31-41
Publication identifier
http://dx.doi.org/10.1016/j.stamet.2010.05.002
Metadata
Show full item record
Author(s)
Meziani, Katia
Butucea, Cristina
Abstract (EN)
In this paper, we consider a Gaussian sequence of independent observations having a polynomially increasing variance. This model describes a large panel of inverse problems, such as the deconvolution of blurred images or the recovering of the fractional derivative of a signal. We estimate the sum of squares of the means of our observations. This quadratic functional has practical meanings, e.g. the energy of a signal, and it is often used for goodness-of-fit testing. We compute Pinsker estimators when the underlying signal has both a finite and infinite amount of smoothness. When the signal is sufficiently smoother than the difficulty of the inverse problem, we attain the parametric rate and the efficiency constant associated with it. Moreover, we give upper bounds of the second order term in the risk. Otherwise, when the parametric rate cannot be attained, we compute non parametric upper bounds of the risk.
Subjects / Keywords
Second order risk; Quadratic functional; Projection estimator; Pinsker estimator; Parametric rate; Minimax upper bounds; Inverse problem; Gaussian sequence model

Related items

Showing items related by title and author.

  • Thumbnail
    Rank penalized estimation of a quantum system 
    Meziani, Katia; Hebiri, Mohamed; Butucea, Cristina; Alquier, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive sup-norm estimation of the Wigner function in noisy quantum homodyne tomography 
    Lounici, Karim; Meziani, Katia; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive estimation of the density matrix in quantum homodyne tomography with noisy data 
    Peyré, Gabriel; Meziani, Katia; Alquier, Pierre (2013) Article accepté pour publication ou publié
  • Thumbnail
    Minimax estimation of linear and quadratic functionals on sparsity classes 
    Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre (2017) Article accepté pour publication ou publié
  • Thumbnail
    Early stopping for statistical inverse problems via truncated SVD estimation 
    Blanchard, Gilles; Hoffman, Marc; Reiß, Markus (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo