Show simple item record

dc.contributor.authorRivoirard, Vincent
dc.contributor.authorLoubes, Jean-Michel
HAL ID: 12832
dc.date.accessioned2011-10-26T14:12:18Z
dc.date.available2011-10-26T14:12:18Z
dc.date.issued2009
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7338
dc.language.isoenen
dc.subjectMaxisetsen
dc.subjectRegularization Methodsen
dc.subjectInverse Problemsen
dc.subject.ddc519en
dc.titleReview of rates of convergence and regularity conditions for inverse problemsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherInstitut de Mathématiques de Toulouse (IMT) Université Paul Sabatier - Toulouse III – Université Toulouse le Mirail - Toulouse II – Université des Sciences Sociales - Toulouse I – Institut National des Sciences Appliquées de Toulouse – CNRS : UMR5219;France
dc.description.abstractenThe aim of this article is to review the different rates of convergence encountered in inverse problems, with both deterministic and stochastic noise. Indeed, in the litterature, several regularity conditions are often assumed leading to apparently different rates. We point out the different points of view and provide global assumptions that handle most of the cases encountered. Moreover we discuss optimality of some different usual estimators in the minimax but also the maxiset framework.en
dc.relation.isversionofjnlnameInternational Journal of Tomography & Statistics
dc.relation.isversionofjnlvol11en
dc.relation.isversionofjnlissueS09en
dc.relation.isversionofjnldate2009
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00634393/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherIndian Society for Development & Environnement Researchen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record