• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Attractors for a non-linear parabolic equation modelling suspension flows

Thumbnail
Date
2009
Link to item file
http://hal.archives-ouvertes.fr/hal-00359702/en/
Dewey
Analyse
Sujet
Non-Newtonian fluids; set-valued dynamical system; global attractor
Journal issue
Discrete and Continuous Dynamical Systems. Series B
Volume
11
Number
2
Publication date
03-2009
Article pages
205-231
Publisher
Southwest Missouri State University Dept. of Mathematics
DOI
http://dx.doi.org/10.3934/dcdsb.2009.11.205
URI
https://basepub.dauphine.fr/handle/123456789/729
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Gimenez, Angel
Catto, Isabelle
Amigo, M. Jose
Valero, Jose
Type
Article accepté pour publication ou publié
Abstract (EN)
In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hébraud and Lequeux for concentrated suspensions

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.