• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Large scale behavior of semiflexible heteropolymers

Thumbnail
Date
2010
Link to item file
http://fr.arxiv.org/abs/0807.4232
Dewey
Probabilités et mathématiques appliquées
Sujet
Analysis on specific compact groups; Disordered systems; Central limit and other weak theorems; Processes in random environments
Journal issue
Annales de l'I.H.P. Probabilités et Statistiques
Volume
46
Number
1
Publication date
2010
Article pages
97-118
Publisher
Institute of Mathematical Statistics
DOI
http://dx.doi.org/10.1214/08-AIHP310
URI
https://basepub.dauphine.fr/handle/123456789/725
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Caravenna, Francesco
Giacomin, Giambattista
Gubinelli, Massimiliano
Type
Article accepté pour publication ou publié
Abstract (EN)
We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a Brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative Fourier analysis, we establish the Brownian character of the model on large scale and we obtain an expression for the diffusion constant. We moreover give conditions yielding quantitative mixing properties.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.