Show simple item record

dc.contributor.authorHaspot, Boris
dc.date.accessioned2011-10-14T13:42:12Z
dc.date.available2011-10-14T13:42:12Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7224
dc.language.isoenen
dc.subjectNavier–Stokes equationsen
dc.subjectWeak solutionsen
dc.subject.ddc515en
dc.titleRegularity of weak solutions of the compressible isentropic Navier-Stokes equationen
dc.typeDocument de travail / Working paper
dc.description.abstractenRegularity and uniqueness of weak solution of the compressible isentropic Navier-Stokes equations is proven for small time in dimension N=2,3 under periodic boundary conditions. In this paper, the initial density is not required to have a positive lower bound and the pressure law is assumed to satisfy a condition that reduces to γ > 1 when N = 2 , 3 and P (ρ ) = a ρ γ. In a second part we prove a condition of blow-up in slightly subcritical initial data when ρ ∈ L ∞. We finish by proving that weak solutions in TN turn out to be smooth as long as the density remains bounded in L ∞(L (N +1+ǫ )γ ) with ǫ > 0 arbitrary small.en
dc.publisher.nameKarls Ruprecht Universitäten
dc.publisher.cityHeidelbergen
dc.identifier.citationpages39en
dc.identifier.urlsitehttp://arxiv.org/abs/1001.1581v1en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record