• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Phasefield theory for fractional diffusion-reaction equations and applications

Imbert, Cyril; Souganidis, Panagiotis E. (2009), Phasefield theory for fractional diffusion-reaction equations and applications. https://basepub.dauphine.fr/handle/123456789/7218

Type
Document de travail / Working paper
External document link
http://arxiv.org/abs/0907.5524v1
Date
2009
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
41
Metadata
Show full item record
Author(s)
Imbert, Cyril cc
Souganidis, Panagiotis E.
Abstract (EN)
This paper is concerned with diffusion-reaction equations where the classical diffusion term, such as the Laplacian operator, is replaced with a singular integral term, such as the fractional Laplacian operator. As far as the reaction term is concerned, we consider bistable non-linearities. After properly rescaling (in time and space) these integro-differential evolution equations, we show that the limits of their solutions as the scaling parameter goes to zero exhibit interfaces moving by anisotropic mean curvature. The singularity and the unbounded support of the potential at stake are both the novelty and the challenging difficulty of this work.
Subjects / Keywords
fractional diffusion-reaction equations; traveling wave; phasefield theory; anisotropic mean curvature motion; fractional Laplacian; Green-Kubo type formulae

Related items

Showing items related by title and author.

  • Thumbnail
    Fully nonlinear stochastic partial differential equations: non-smooth equations and applications 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (1998) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations 
    Lions, Pierre-Louis; Souganidis, Panagiotis E. (1995) Article accepté pour publication ou publié
  • Thumbnail
    Speed of propagation for Hamilton-Jacobi equations with multiplicative rough time dependence and convex Hamiltonians 
    Gassiat, Paul; Gess, Benjamin; Lions, Pierre-Louis; Souganidis, Panagiotis E. (2018) Document de travail / Working paper
  • Thumbnail
    Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations 
    Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization and Enhancement for the G—Equation 
    Nolen, James; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo