Show simple item record

dc.contributor.authorEsteban, Maria J.
dc.contributor.authorFelmer, Patricio
dc.contributor.authorQuaas, Alexander
dc.date.accessioned2011-10-14T08:45:22Z
dc.date.available2011-10-14T08:45:22Z
dc.date.issued2010
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7217
dc.language.isoenen
dc.subjectFully nonlinear equationen
dc.subjectFully nonlinear operatoren
dc.subjectMultiple eigenvaluesen
dc.subjectPrincipal eigenvalueen
dc.subjectRadially symmetric solutionsen
dc.subject.ddc515en
dc.titleEigenvalues for Radially Symmetric Fully Nonlinear Operatorsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper we present an elementary theory about the existence of eigenvalues for fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the framework of viscosity solutions. Here we want to show that for the radially symmetric operators or in the one dimensional case a much simpler theory, based on ode and degree theory arguments, can be established. We obtain the complete set of eigenvalues and eigenfunctions characterized by the number of zeroes.en
dc.relation.isversionofjnlnameCommunications in Partial Differential Equations
dc.relation.isversionofjnlvol35en
dc.relation.isversionofjnlissue9en
dc.relation.isversionofjnldate2010
dc.relation.isversionofjnlpages1716-1737en
dc.relation.isversionofdoihttp://dx.doi.org/10.1080/03605301003674848en
dc.identifier.urlsitehttp://arxiv.org/abs/0908.1060v1en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherTaylor & Francisen
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record