• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Improved intermediate asymptotics for the heat equation

Bartier, Jean-Philippe; Blanchet, Adrien; Dolbeault, Jean; Escobedo, Miguel (2011), Improved intermediate asymptotics for the heat equation, Applied Mathematics Letters, 24, 1, p. 76-81. http://dx.doi.org/10.1016/j.aml.2010.08.020

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0908.2226v1
Date
2011
Journal name
Applied Mathematics Letters
Volume
24
Number
1
Publisher
Elsevier
Pages
76-81
Publication identifier
http://dx.doi.org/10.1016/j.aml.2010.08.020
Metadata
Show full item record
Author(s)
Bartier, Jean-Philippe
Blanchet, Adrien
Dolbeault, Jean cc
Escobedo, Miguel
Abstract (EN)
This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the stationary solution, we get improved convergence rates using entropy/entropy-production methods. We establish the equivalence of the exponential decay of the entropies with new, improved functional inequalities in restricted classes of functions. This letter is the counterpart in a linear framework of a recent work on fast diffusion equations; see Bonforte et al. (2009) [18]. The results extend to the case of a Fokker–Planck equation with a general confining potential.
Subjects / Keywords
Intermediate asymptotics; Self-similar variables; Ornstein–Uhlenbeck equation; Entropy; Poincaré inequality; Logarithmic Sobolev inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Thumbnail
    L1 and L8 intermediate asymptotics for scalar conservation laws 
    Dolbeault, Jean; Escobedo, Miguel (2005) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotics of the fast diffusion equation via entropy estimates 
    Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    Gradient estimates for a degenerate parabolic equation with gradient absorption and applications 
    Bartier, Jean-Philippe; Laurençot, Philippe (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo