• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff

Mouhot, Clément; Strain, Robert (2007), Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, Journal de Mathématiques Pures et Appliquées, 87, 5, p. 515-535. http://dx.doi.org/10.1016/j.matpur.2007.03.003

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00086958/en/
Date
2007
Journal name
Journal de Mathématiques Pures et Appliquées
Volume
87
Number
5
Publisher
Elsevier
Pages
515-535
Publication identifier
http://dx.doi.org/10.1016/j.matpur.2007.03.003
Metadata
Show full item record
Author(s)
Mouhot, Clément
Strain, Robert
Abstract (EN)
In this paper we prove new constructive coercivity estimates for the Boltzmann collision operator without cutoff, that is for long-range interactions. In particular we give a generalized sufficient condition for the existence of a spectral gap which involves both the growth behavior of the collision kernel at large relative velocities and its singular behavior at grazing and frontal collisions. It provides in particular existence of a spectral gap and estimates on it for interactions deriving from the hard potentials $\phi(r) = r^{-(s−1)}$, $s \ge 5$ or the so-called moderately soft potentials $\phi(r) = r^{−(s−1)}$, $3 < s < 5$, (without angular cutoff). In particular this paper recovers (by constructive means), improves and extends previous results of Pao [46]. We also obtain constructive coercivity estimates for the Landau collision operator for the optimal coercivity norm pointed out in [34] and we formulate a conjecture about a unified necessary and sufficient condition for the existence of a spectral gap for Boltzmann and Landau linearized collision operators.
Subjects / Keywords
linearized Boltzmann operator; linearized Landau operator; quantitative; long-range interaction; non-cutoff; soft potentials; spectral gap; coercivity estimates

Related items

Showing items related by title and author.

  • Thumbnail
    Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials 
    Baranger, Céline; Mouhot, Clément (2005) Article accepté pour publication ou publié
  • Thumbnail
    Explicit coercivity estimates for the linearized Boltzmann and Landau operators 
    Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative linearized study of the Boltzmann collision operator and applications 
    Mouhot, Clément (2007) Article accepté pour publication ou publié
  • Thumbnail
    Fast algorithms for computing the Boltzmann collision operator 
    Pareschi, Lorenzo; Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off 
    Hérau, Frédéric; Tonon, Daniela; Tristani, Isabelle (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo