Polymer dynamics in the depinned phase: metastability with logarithmic barriers
Toninelli, Fabio Lucio; Simenhaus, François; Martinelli, Fabio; Lacoin, Hubert; Caputo, Pietro (2012), Polymer dynamics in the depinned phase: metastability with logarithmic barriers, Probability Theory and Related Fields, 153, 3-4, p. 587-641. http://dx.doi.org/10.1007/s00440-011-0355-6
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://arxiv.org/abs/1007.4470v1Date
2012Nom de la revue
Probability Theory and Related FieldsVolume
153Numéro
3-4Éditeur
Springer
Pages
587-641
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Toninelli, Fabio Lucio
Simenhaus, François
Martinelli, Fabio
Lacoin, Hubert
Caputo, Pietro
Résumé (EN)
We consider the stochastic evolution of a (1 + 1)-dimensional polymer in the depinned regime. At equilibrium the system exhibits a double well structure: the polymer lies (essentially) either above or below the repulsive line. As a consequence, one expects a metastable behavior with rare jumps between the two phases combined with a fast thermalization inside each phase. However, the energy barrier between these two phases is only logarithmic in the system size L and therefore the two relevant time scales are only polynomial in L with no clear-cut separation between them. The whole evolution is governed by a subtle competition between the diffusive behavior inside one phase and the jumps across the energy barriers. Our main results are: (i) a proof that the mixing time of the system lies between L25 and L25+2 ; (ii) the identification of two regions associated with the positive and negative phase of the polymer together with the proof of the asymptotic exponentiality of the tunneling time between them with rate equal to a half of the spectral gap.Mots-clés
Quasi-stationary distribution; Coupling; Mixing time; Spectral gap; Metastability; Polymer pinning model; Reversible Markov chainsPublications associées
Affichage des éléments liés par titre et auteur.
-
Caputo, Pietro; Toninelli, Fabio Lucio; Martinelli, Fabio; Simenhaus, François (2011) Article accepté pour publication ou publié
-
Lacoin, Hubert; Simenhaus, François; Toninelli, Fabio Lucio (2015) Article accepté pour publication ou publié
-
Toninelli, Fabio Lucio; Simenhaus, François; Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Document de travail / Working paper
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié