• français
    • English
  • français 
    • français
    • English
  • Connexion
JavaScript is disabled for your browser. Some features of this site may not work without it.
Accueil

Afficher

Cette collectionPar Date de CréationAuteursTitresSujetsNoms de revueToute la baseCentres de recherche & CollectionsPar Date de CréationAuteursTitresSujetsNoms de revue

Mon compte

Connexion

Statistiques

Afficher les statistiques d'usage

Missing data in a stochastic Dollo model for binary trait data, and its application to the dating of Proto-Indo-European

Thumbnail
Ouvrir
supplement.pdf (727.0Kb)
Date
2011
Description
Le fichier attaché ne contient pas le texte de cet article, mais des éléments complémentaires : This supplement to Ryder and Nicholls (2009) gives results for a second data set, by Dyen et al. (1997), as well as details of validations using synthetic data.
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
Bayesian inference; Dating methods; Markov chain Monte Carlo methods; Missing data; Phylogenetics; Proto-Indo-European; Rate heterogeneity
Nom de la revue
Journal of the Royal Statistical Society. Series C, Applied Statistics
Volume
60
Numéro
1
Date de publication
2011
Pages article
71-92
Nom de l'éditeur
Wiley
DOI
http://dx.doi.org/10.1111/j.1467-9876.2010.00743.x
URI
https://basepub.dauphine.fr/handle/123456789/7185
Collections
  • CEREMADE : Publications
Métadonnées
Afficher la notice complète
Auteur
Nicholls, Geoff K
Ryder, Robin J.
Type
Article accepté pour publication ou publié
Résumé en anglais
Nicholls and Gray have described a phylogenetic model for trait data. They used their model to estimate branching times on Indo-European language trees from lexical data. Alekseyenko and co-workers extended the model and gave applications in genetics. We extend the inference to handle data missing at random. When trait data are gathered, traits are thinned in a way that depends on both the trait and the missing data content. Nicholls and Gray treated missing records as absent traits. Hittite has 12% missing trait records. Its age is poorly predicted in their cross-validation. Our prediction is consistent with the historical record. Nicholls and Gray dropped seven languages with too much missing data. We fit all 24 languages in the lexical data of Ringe and co-workers. To model spatiotemporal rate heterogeneity we add a catastrophe process to the model. When a language passes through a catastrophe, many traits change at the same time. We fit the full model in a Bayesian setting, via Markov chain Monte Carlo sampling. We validate our fit by using Bayes factors to test known age constraints. We reject three of 30 historically attested constraints. Our main result is a unimodal posterior distribution for the age of Proto-Indo-European centred at 8400 years before Present with 95% highest posterior density interval equal to 7100–9800 years before Present.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Cette création est mise à disposition sous un contrat Creative Commons.