dc.contributor.author | Bernot, Marc | |
dc.contributor.author | Figalli, Alessio | |
dc.contributor.author | Santambrogio, Filippo | |
dc.date.accessioned | 2009-07-03T08:09:25Z | |
dc.date.available | 2009-07-03T08:09:25Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/717 | |
dc.language.iso | en | en |
dc.subject | Euler incompressible | en |
dc.subject.ddc | 519 | en |
dc.title | Generalized solutions for the Euler equations in one and two dimensions | en |
dc.type | Article accepté pour publication ou publié | en_US |
dc.contributor.editoruniversityother | Université de Nice Sophia-Antipolis;France | |
dc.contributor.editoruniversityother | Ecole Normale Supérieure de Lyon;France | |
dc.description.abstracten | In this paper we study generalized solutions (in the Brenier's sense) for the Euler equations. We prove that uniqueness holds in dimension one whenever the pressure field is smooth, while we show that in dimension two uniqueness is far from being true. In the case of the two-dimensional disc we study solutions to Euler equations where particles located at a point $x$ go to $-x$ in a time $\pi$, and we give a quite general description of the (large) set of such solutions. As a byproduct, we can construct a new class of classical solutions to Euler equations in the disc. | en |
dc.relation.isversionofjnlname | Journal de Mathématiques Pures et Appliquées | |
dc.relation.isversionofjnlvol | 91 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2009-02 | |
dc.relation.isversionofjnlpages | 137-155 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.matpur.2008.09.011 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00284725/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |