• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions

Benguria, Rafael; Dolbeault, Jean; Monneau, Régis (2009), Harnack inequalities and discrete - continuum error estimates for a chain of atoms with two - body interactions, Journal of Statistical Physics, 134, 1, p. 27-51. http://dx.doi.org/10.1007/s10955-008-9662-4

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00267954/en/
Date
2009
Nom de la revue
Journal of Statistical Physics
Volume
134
Numéro
1
Éditeur
Springer
Pages
27-51
Identifiant publication
http://dx.doi.org/10.1007/s10955-008-9662-4
Métadonnées
Afficher la notice complète
Auteur(s)
Benguria, Rafael
Dolbeault, Jean cc
Monneau, Régis
Résumé (EN)
In the three-dimensional euclidean space, we consider deformations of an infinite linear chain of atoms where each atom interacts with all others through a two-body potential. We compute the effect of an external force applied to the chain. At equilibrium, the positions of the particles satisfy an Euler-Lagrange equation. For large classes of potentials, we prove that every solution is well approximated by the solution of a continuous model. We establish an error estimate between the discrete and the continuous solution based on a Harnack lemma of independent interest. Finally we apply our results to some Lennard-Jones potentials.
Mots-clés
Two-body interactions; thermodynamic limit; Harnack inequality; Cauchy-Born rule; error estimates; discrete-continuum; nonlinear elasticity

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Oscillating minimizers of a fourth order problem invariant under scaling 
    Catto, Isabelle; Dolbeault, Jean; Benguria, Rafael; Monneau, Régis (2004) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Homogenization of some particle systems with two-body interactions and of the dislocation dynamics 
    Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
  • Vignette de prévisualisation
    Convexity estimates for nonlinear elliptic equations and application to free boundary problems 
    Dolbeault, Jean; Monneau, Régis (2002) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity 
    Bonforte, Matteo; Simonov, Nikita (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo