Show simple item record

dc.contributor.authorGlass, Olivier
dc.contributor.authorSueur, Franck
dc.date.accessioned2011-10-10T14:27:23Z
dc.date.available2011-10-10T14:27:23Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7144
dc.language.isoenen
dc.subjectleast action principleen
dc.subjectPerfect incompressible fluiden
dc.subjectfluid-rigid body interactionen
dc.subject.ddc515en
dc.titleThe movement of a solid in an incompressible perfect fluid as a geodesic flowen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain has recently been studied under its PDE formulation. In particular, classical solutions have been shown to exist locally in time. In this paper, following the celebrated result of Arnold concerning the case of a perfect incompressible fluid alone, we prove that these classical solutions are the geodesics of a Riemannian manifold of infinite dimension, in the sense that they are the critical points of an action, which is the integral over time of the total kinetic energy of the fluid-rigid body system.en
dc.relation.isversionofjnlnameProceedings of the American Mathematical Society
dc.relation.isversionofjnlvol140
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages2155-2168
dc.relation.isversionofdoihttp://dx.doi.org/10.1090/S0002-9939-2011-11219-Xen
dc.identifier.urlsitehttp://arxiv.org/abs/1102.1380v1en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherAmerican Mathematical Societyen
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record