Show simple item record

dc.contributor.authorVialard, François-Xavier
dc.date.accessioned2011-10-05T13:45:33Z
dc.date.available2011-10-05T13:45:33Z
dc.date.issued2013
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7120
dc.language.isoenen
dc.subjectmedical imagingen
dc.subject.ddc519en
dc.titleExtension to Infinite Dimensions of a Stochastic Second-Order Model associated with the Shape Splinesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe introduce a second-order stochastic model to explore the variability in growth of biological shapes with applications to medical imaging. Our model is a perturbation with a random force of the Hamiltonian formulation of the geodesics. Starting with the finite-dimensional case of landmarks, we prove that the random solutions do not blow up in finite time. We then prove the consistency of the model by demonstrating a strong convergence result from the finite-dimensional approximations to the infinite-dimensional setting of shapes. To this end we introduce a suitable Hilbert space close to a Besov space that leads to our result being valid in any dimension of the ambient space and for a wide range of shapes.en
dc.relation.isversionofjnlnameStochastic Processes and their Applications
dc.relation.isversionofjnlvol123
dc.relation.isversionofjnlissue6
dc.relation.isversionofjnldate2013
dc.relation.isversionofjnlpages2110-2157
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.spa.2013.01.012
dc.identifier.urlsitehttp://arxiv.org/abs/1003.3957v1
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record