• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View

Trouvé, Alain; Vialard, François-Xavier (2012), Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View, Quarterly of Applied Mathematics, 70, 2, p. 219-251. http://dx.doi.org/10.1090/S0033-569X-2012-01250-4

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1003.3895v1
Date
2012
Journal name
Quarterly of Applied Mathematics
Volume
70
Number
2
Publisher
American Mathematical Society
Pages
219-251
Publication identifier
http://dx.doi.org/10.1090/S0033-569X-2012-01250-4
Metadata
Show full item record
Author(s)
Trouvé, Alain
Vialard, François-Xavier
Abstract (EN)
This article presents a new mathematical framework to perform statistical analysis on time-indexed sequences of 2D or 3D shapes. At the core of this statistical analysis is the task of time interpolation of such data. Current models in use can be compared to linear interpolation for one dimensional data. We develop a spline interpolation method which is directly related to cubic splines on a Riemannian manifold. Our strategy consists of introducing a control variable on the Hamiltonian equations of the geodesics. Motivated by statistical modeling of spatiotemporal data, we also design a stochastic model to deal with random shape evolutions. This model is closely related to the spline model since the control variable previously introduced is set as a random force perturbing the evolution. Although we focus on the finite dimensional case of landmarks, our models can be extended to infinite dimensional shape spaces, and they provide a first step for a non parametric growth model for shapes taking advantage of the widely developed framework of large deformations by diffeomorphisms.
Subjects / Keywords
statistical analysis

Related items

Showing items related by title and author.

  • Thumbnail
    Extension to Infinite Dimensions of a Stochastic Second-Order Model associated with the Shape Splines 
    Vialard, François-Xavier (2013) Article accepté pour publication ou publié
  • Thumbnail
    A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces 
    Vialard, François-Xavier; Trouvé, Alain (2010) Communication / Conférence
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    Local vs global descriptors of hippocampus shape evolution for Alzheimer's longitudinal population analysis 
    Fiot, Jean-Baptiste; Risser, Laurent; Cohen, Laurent D.; Fripp, Jürgen; Vialard, François-Xavier (2012) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo