• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials

Mouhot, Clément (2006), Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Communications in Mathematical Physics, 261, p. 629-672. http://dx.doi.org/10.1007/s00220-005-1455-x

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00076709/en/
Date
2006
Journal name
Communications in Mathematical Physics
Volume
261
Publisher
Springer
Pages
629-672
Publication identifier
http://dx.doi.org/10.1007/s00220-005-1455-x
Metadata
Show full item record
Author(s)
Mouhot, Clément
Abstract (EN)
For the spatially homogeneous Boltzmann equation with hard po- tentials and Grad's cutoff (e.g. hard spheres), we give quantitative estimates of exponential convergence to equilibrium, and we show that the rate of exponential decay is governed by the spectral gap for the linearized equation, on which we provide a lower bound. Our approach is based on establishing spectral gap-like estimates valid near the equilibrium, and then connecting the latter to the quantitative nonlinear theory. This leads us to an explicit study of the linearized Boltzmann collision operator in functional spaces larger than the usual linearization setting.
Subjects / Keywords
Boltzmann equation; entropy production; rate of convergence; trend to equilibrium; explicit; spectral gap; spectrum; linearized Boltzmann collision operator; spatially homogeneous

Related items

Showing items related by title and author.

  • Thumbnail
    Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials. 
    Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
  • Thumbnail
    Exponential convergence to equilibrium for the homogeneous Boltzmann equation for hard potentials without cut-off 
    Tristani, Isabelle (2014) Article accepté pour publication ou publié
  • Thumbnail
    Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials 
    Carrapatoso, Kleber (2015) Article accepté pour publication ou publié
  • Thumbnail
    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off 
    Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
  • Thumbnail
    Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions 
    Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo