• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Stochastic analysis on Gaussian space applied to drift estimation

Thumbnail
Date
2008
Publisher city
La Rochelle
Publisher
Université de La Rochelle
Link to item file
http://arxiv.org/abs/0805.2002v1
Dewey
Probabilités et mathématiques appliquées
Sujet
harmonic analysis; Malliavin calculus; Gaussian space; Stein estimation; Nonparametric drift estimation
URI
https://basepub.dauphine.fr/handle/123456789/7107
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Réveillac, Anthony
Privault, Nicolas
Type
Document de travail / Working paper
Item number of pages
36
Abstract (EN)
In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Loève expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity using Bayes estimators. We also construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and stochastic analysis on Gaussian space, in which superharmonic functionals of the process paths play a particular role. Our results are illustrated by numerical simulations and extend the construction of James-Stein type estimators for Gaussian processes by Berger and Wolper.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.