Hermite variations of the fractional Brownian sheet
Réveillac, Anthony; Stauch, Michael; Tudor, Ciprian A. (2012), Hermite variations of the fractional Brownian sheet, Stochastics and Dynamics, 12, 3. http://dx.doi.org/10.1142/S0219493711500213
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00522801/fr/Date
2012Journal name
Stochastics and DynamicsVolume
12Number
3Publisher
World Scientific
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet $W^{\alpha, \beta}$ with Hurst parameter $(\alpha, \beta) \in (0,1)^2$. When $0<\alpha \leq 1-\frac{1}{2q}$ or $0<\beta \leq 1-\frac{1}{2q}$ a central limit theorem holds for the renormalized Hermite variations of order $q\geq 2$, while for $1-\frac{1}{2q}<\alpha, \beta < 1$ we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time $(1,1)$.Subjects / Keywords
Limit theorems; Hermite variations; Multiple stochastic integrals; Malliavin calculus; Weak convergenceRelated items
Showing items related by title and author.
-
Réveillac, Anthony (2009) Article accepté pour publication ou publié
-
Réveillac, Anthony; Pakkanen, Mikko S. (2016) Article accepté pour publication ou publié
-
Nourdin, Ivan; Réveillac, Anthony (2009) Article accepté pour publication ou publié
-
The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6 Nourdin, Ivan; Réveillac, Anthony; Swanson, Jason (2010) Article accepté pour publication ou publié
-
Réveillac, Anthony (2009) Article accepté pour publication ou publié