• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Asymptotics of the fast diffusion equation via entropy estimates

Grillo, Gabriele; Vazquez, Juan-Luis; Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean (2009), Asymptotics of the fast diffusion equation via entropy estimates, Archive for Rational Mechanics and Analysis, 191, 2, p. 347-385. http://dx.doi.org/10.1007/s00205-008-0155-z

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00142404/en/
Date
2009
Journal name
Archive for Rational Mechanics and Analysis
Volume
191
Number
2
Publisher
Springer
Pages
347-385
Publication identifier
http://dx.doi.org/10.1007/s00205-008-0155-z
Metadata
Show full item record
Author(s)
Grillo, Gabriele
Vazquez, Juan-Luis
Blanchet, Adrien
Bonforte, Matteo
Dolbeault, Jean cc
Abstract (EN)
We consider non-negative solutions of the fast diffusion equation u_t=\Delta u^m with m\in(0,1), in the Euclidean space R^d, d \ge 3, and study the asymptotic behavior of a natural class of solutions, in the limit corresponding to t\to\infty for m \ge mc=(d-2)/d, or as t approaches the extinction time when m < mc. For a class of initial data we prove that the solution converges with a polynomial rate to a self-similar solution, for t large enough if m \ge mc, or close enough to the extinction time if m < mc. Such results are new in the range m \le mc where previous approaches fail. In the range mc
Subjects / Keywords
Fast diffusion equation; self-similar solutions; asymptotic behavior; free energy methods; Hardy-Poincaré inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities 
    Vazquez, Juan-Luis; Grillo, Gabriele; Dolbeault, Jean; Bonforte, Matteo (2010) Article accepté pour publication ou publié
  • Thumbnail
    Hardy-Poincaré inequalities and applications to nonlinear diffusions 
    Blanchet, Adrien; Bonforte, Matteo; Dolbeault, Jean; Grillo, Gabriele; Vazquez, Juan-Luis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Fast diffusion flow on manifolds of nonpositive curvature 
    Bonforte, Matteo; Grillo, Gabriele; Vazquez, Juan-Luis (2008) Article accepté pour publication ou publié
  • Thumbnail
    Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo