• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Oscillating minimizers of a fourth order problem invariant under scaling

Thumbnail
View/Open
oscillating.PDF (286.8Kb)
Date
2004
Dewey
Analyse
Sujet
Fourth-order operators; Loss of compactness; Inequalities; Minimization; Scaling invariance; Euler–Lagrange equation; Lagrange multiplier; Shooting method; Commutator method for Lieb– Thirring inequalities; Lieb–Thirring inequalities
Journal issue
Journal of Differential Equations
Volume
205
Number
1
Publication date
2004
Article pages
253-269
DOI
http://dx.doi.org/10.1016/j.jde.2004.03.024
URI
https://basepub.dauphine.fr/handle/123456789/697
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Catto, Isabelle
Dolbeault, Jean
Benguria, Rafael
Monneau, Régis
Type
Article accepté pour publication ou publié
Abstract (EN)
By variational methods, we prove the inequality $$\int_\R u''{}^2\,dx-\int_\R u''\,u^2\,dx\geq I\,\int_\R u^4\,dx\quad \forall\; u\in L^4(\R)\;\mbox{such that}\; u''\in L^2(\R) $$ for some constant $I\in (-9/64,-1/4)$. This inequality is connected to Lieb-Thirring type problems and has interesting scaling properties. The best constant is achieved by sign changing minimizers of a problem on periodic functions, but does not depend on the period. Moreover, we completely characterize the minimizers of the periodic problem.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.