• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of Brownian ratchets

Kowalczyk, Michal; Dolbeault, Jean; Blanchet, Adrien (2009), Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of Brownian ratchets, SIAM Journal on Mathematical Analysis, 41, 1, p. 46-76. http://dx.doi.org/10.1137/080720322

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00270521/en/
Date
2009
Journal name
SIAM Journal on Mathematical Analysis
Volume
41
Number
1
Publisher
SIAM
Pages
46-76
Publication identifier
http://dx.doi.org/10.1137/080720322
Metadata
Show full item record
Author(s)
Kowalczyk, Michal
Dolbeault, Jean cc
Blanchet, Adrien
Abstract (EN)
A periodic perturbation of a Gaussian measure modifies the sharp constants in Poincaré and logarithmic Sobolev inequalities in the homogenization limit, that is, when the period of a periodic perturbation converges to zero. We use variational techniques to determine the homogenized constants and get optimal convergence rates towards equilibrium of the solutions of the perturbed diffusion equations. The study of these sharp constants is motivated by the study of the stochastic Stokes' drift. It also applies to Brownian ratchets and molecular motors in biology. We first establish a transport phenomenon. Asymptotically, the center of mass of the solution moves with a constant velocity, which is determined by a doubly periodic problem. In the reference frame attached to the center of mass, the behaviour of the solution is governed at large scale by a diffusion with a modified diffusion coefficient. Using the homogenized logarithmic Sobolev inequality, we prove that the solution converges in self-similar variables attached to the center of mass to a stationary solution of a Fokker-Planck equation modulated by a periodic perturbation with fast oscillations, with an explicit rate. We also give an asymptotic expansion of the traveling diffusion front corresponding to the stochastic Stokes' drift with given potential flow.
Subjects / Keywords
perturbation; interpolation; logarithmic Sobolev inequalities; Holley-Stroock perturbation results; spectral gap; Poincaré inequality; sharp constants; functional inequalities; intermediate asymptotics; effective diffusion; transport; contraction; traveling front; traveling potential; doubly-periodic equation; asymptotic expansion; moment estimates; Fokker-Planck equation; molecular motors; Brownian ratchets; homogenization; two-scale convergence; minimizing sequences; defect of convergence; loss of compactness; Stochastic Stokes' drift

Related items

Showing items related by title and author.

  • Thumbnail
    Travelling fronts in stochastic Stokes' drifts 
    Blanchet, Adrien; Dolbeault, Jean; Kowalczyk, Michal (2008) Article accepté pour publication ou publié
  • Thumbnail
    A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients 
    Kowalczyk, Michal; Illner, Reinhard; Dolbeault, Jean; Bartier, Jean-Philippe (2007) Article accepté pour publication ou publié
  • Thumbnail
    The flashing ratchet: long time behavior and dynamical systems interpretation 
    Dolbeault, Jean; Kinderlehrer, David; Kowalczyk, Michal (2002) Document de travail / Working paper
  • Thumbnail
    Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities and spectral estimates 
    Dolbeault, Jean; Kowalczyk, Michal (2017) Article accepté pour publication ou publié
  • Thumbnail
    Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences 
    Dolbeault, Jean; Esteban, Maria J.; Kowalczyk, Michal; Loss, Michael (2014) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo