Show simple item record

dc.contributor.authorCannarsa, Piermarco
dc.contributor.authorCardaliaguet, Pierre
dc.date.accessioned2011-09-06T15:48:34Z
dc.date.available2011-09-06T15:48:34Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6933
dc.language.isoenen
dc.subjectGranular matteren
dc.subjecteikonal equationen
dc.subjectsingularitiesen
dc.subjectsemiconcave functionsen
dc.subjectviscosity solutionsen
dc.subjectoptimal mass transferen
dc.subject.ddc515en
dc.titleRepresentation of equilibrium solutions to the table problem of growing sandpilesen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn the dynamical theory of granular matter the so-called table problem consists instudying the evolution of a heap of matter poured continuously onto a bounded domain Ω⊂\R2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of Ω.en
dc.relation.isversionofjnlnameInterfaces and free boundaries
dc.relation.isversionofjnlvol6en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages435-464en
dc.relation.isversionofdoihttp://dx.doi.org/10.4171/JEMS/16en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherEuropean Mathematical Societyen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record