
Existence and uniqueness for dislocation dynamics with nonnegative velocity
Alvarez, Olivier; Cardaliaguet, Pierre; Monneau, Régis (2005), Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces and free boundaries, 7, 4, p. 415-434. http://dx.doi.org/10.4171/IFB/131
View/ Open
Type
Article accepté pour publication ou publiéDate
2005Journal name
Interfaces and free boundariesVolume
7Number
4Publisher
European Mathematical Society
Pages
415-434
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the problem of large time existence of solutions for a mathematical model describing dislocation dynamics in crystals. The mathematical model is a geometric and non local eikonal equation which does not preserve the inclusion. Under the assumption that the dislocation line is expanding, we prove existence and uniqueness of the solution in the framework of discontinuous viscosity solutions. We also show that this solution satisfies some variational properties, which allows to prove that the energy associated to the dislocation dynamics is non increasing.Subjects / Keywords
Dislocation dynamics; eikonal equation; Hamilton-Jacobi equations; discontinuous viscosity solutions; non-local equationsRelated items
Showing items related by title and author.
-
Barles, Guy; Cardaliaguet, Pierre; Ley, Olivier; Monneau, Régis (2008) Article accepté pour publication ou publié
-
Homogenization of some particle systems with two-body interactions and of the dislocation dynamics Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009) Article accepté pour publication ou publié
-
Forcadel, Nicolas (2008) Article accepté pour publication ou publié
-
Monneau, Régis; Forcadel, Nicolas; Al Haj, Mohammad (2013) Article accepté pour publication ou publié
-
Imbert, Cyril; Monneau, Régis; Rouy, Elisabeth (2007) Document de travail / Working paper