• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Mean-field variational approximate Bayesian inference for latent variable models

Thumbnail
View/Open
note_bayesian.pdf (291.6Kb)
Date
2007
Dewey
Probabilités et mathématiques appliquées
Sujet
Bayesian inference; Bayesian probit model; Gibbs sampling; Latent variable models; Marginal distribution; Mean-field variational methods
Journal issue
Computational Statistics and Data Analysis
Volume
52
Number
2
Publication date
2007
Article pages
790-798
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.csda.2006.10.028
URI
https://basepub.dauphine.fr/handle/123456789/6900
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Consonni, Guido
Marin, Jean-Michel
Type
Article accepté pour publication ou publié
Abstract (EN)
The ill-posed nature of missing variable models offers a challenging testing ground for new computational techniques. This is the case for the mean-field variational Bayesian inference. The behavior of this approach in the setting of the Bayesian probit model is illustrated. It is shown that the mean-field variational method always underestimates the posterior variance and, that, for small sample sizes, the mean-field variational approximation to the posterior location could be poor.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.