dc.contributor.author | Ickowicz, Adrien | |
dc.date.accessioned | 2011-07-25T09:12:15Z | |
dc.date.available | 2011-07-25T09:12:15Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6774 | |
dc.language.iso | en | en |
dc.subject | tracking algorithm | en |
dc.subject | single index model | en |
dc.subject | maximum likelihood | en |
dc.subject | binary sensors | en |
dc.subject | parameter estimation | en |
dc.subject.ddc | 621.3 | en |
dc.title | Track estimation with binary derivative observations | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We focus in this paper in the estimation of a target trajectory defined by whether a time constant parameter in a simple stochastic process or a random walk with binary observations. The binary observation comes from binary derivative sensors, that is, the target is getting closer or moving away. Such a binary obervation has a time property that will be used to ensure the quality of a max-likelihood estimation, through single index model or classification for the constant velocity movement. In the second part of this paper we present a new algorithm for target tracking within a binary sensor network when the target trajectory is assumed to be modeled by a random walk. For a given target, this algorithm provides an estimation of its velocity and its position. The greatest improvements are made through a position correction and velocity analysis. | en |
dc.publisher.name | Université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 14 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00610181/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Traitement du signal | en |