Show simple item record

dc.contributor.authorDarbas, Marion
dc.date.accessioned2011-07-21T16:42:15Z
dc.date.available2011-07-21T16:42:15Z
dc.date.issued2006
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6767
dc.language.isoenen
dc.subjectiterative Krylov subspace solveren
dc.subjectsecond-kind integral equationen
dc.subjecthigh-frequencyen
dc.subjecttransparent operatoren
dc.subjectMaxwell equationsen
dc.subject.ddc515en
dc.titleSome second-kind integral equations in electromagnetismen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe address the derivation of new second-kind combined field integral equations for the Krylov iterative solution of high-frequency electromagnetic scattering problems by a perfect conductor. The proposed formulations extend the well-known Brakhage-Werner and Combined Field Integral Equations and improve the convergence properties of their numerical solution through a Krylov iterative method. We prove that these integral equations are well-posed for any frequency. Preliminary experiments with spherical harmonics in the case of a spherical scatterer illustrate the good behavior of a Krylov iterative solver used for computing the solution of these new integral equations relatively to an increase of the frequency or/and to the presence of a large number of vectorial spherical harmonics.en
dc.publisher.nameUniversité Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages21en
dc.relation.ispartofseriestitleCahiers du CEREMADEen
dc.relation.ispartofseriesnumber2006-15en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record