Date
2006
Ville de l'éditeur
Paris
Nom de l'éditeur
Université Paris-Dauphine
Titre de la collection
Cahiers du CEREMADE
n° dans la collection
2006-15
Indexation documentaire
Analyse
Subject
iterative Krylov subspace solver; second-kind integral equation; high-frequency; transparent operator; Maxwell equations
Type
Document de travail / Working paper
Nombre de pages du document
21
Résumé en anglais
We address the derivation of new second-kind combined field integral equations for
the Krylov iterative solution of high-frequency electromagnetic scattering problems by a
perfect conductor. The proposed formulations extend the well-known Brakhage-Werner
and Combined Field Integral Equations and improve the convergence properties of their
numerical solution through a Krylov iterative method. We prove that these integral equations are well-posed for any frequency. Preliminary experiments with spherical harmonics
in the case of a spherical scatterer illustrate the good behavior of a Krylov iterative solver
used for computing the solution of these new integral equations relatively to an increase of
the frequency or/and to the presence of a large number of vectorial spherical harmonics.