dc.contributor.author | Carlier, Guillaume | |
dc.contributor.author | Lachand-Robert, Thomas | |
dc.contributor.author | Maury, Bertrand | |
dc.date.accessioned | 2011-07-18T12:50:57Z | |
dc.date.available | 2011-07-18T12:50:57Z | |
dc.date.issued | 2001 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6714 | |
dc.language.iso | en | en |
dc.subject | saddle point | en |
dc.subject | Convex functions | en |
dc.subject.ddc | 515 | en |
dc.title | H1-projection into the set of convex functions : a saddle-point formulation | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We investigate numerical methods to approximate the projection-operator from H1
0 into the set of convex functions. We introduce a new formulation of the problem, based
on gradient fi elds. It leads in a natural way to an in finite-dimensional saddle-point
problem, which can be shown to be ill-posed in general. Existence and uniqueness of
a saddle point is obtained for a Lagrangian de ned in suitable spaces. This well-posed
formulation does not lead to an implementable algorithm. Yet, numerical experiments
based on a discretization of the fi rst formulation exhibit a good behaviour. | en |
dc.relation.isversionofjnlname | ESAIM. Proceedings | |
dc.relation.isversionofjnlvol | 10 | en |
dc.relation.isversionofjnldate | 2001 | |
dc.relation.isversionofjnlpages | 277-289 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1051/proc:2001017 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | EDP Sciences | en |
dc.subject.ddclabel | Analyse | en |