Show simple item record

dc.contributor.authorCarlier, Guillaume
dc.contributor.authorLachand-Robert, Thomas
dc.contributor.authorMaury, Bertrand
dc.date.accessioned2011-07-18T12:50:57Z
dc.date.available2011-07-18T12:50:57Z
dc.date.issued2001
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6714
dc.language.isoenen
dc.subjectsaddle pointen
dc.subjectConvex functionsen
dc.subject.ddc515en
dc.titleH1-projection into the set of convex functions : a saddle-point formulationen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe investigate numerical methods to approximate the projection-operator from H1 0 into the set of convex functions. We introduce a new formulation of the problem, based on gradient fi elds. It leads in a natural way to an in finite-dimensional saddle-point problem, which can be shown to be ill-posed in general. Existence and uniqueness of a saddle point is obtained for a Lagrangian de ned in suitable spaces. This well-posed formulation does not lead to an implementable algorithm. Yet, numerical experiments based on a discretization of the fi rst formulation exhibit a good behaviour.en
dc.relation.isversionofjnlnameESAIM. Proceedings
dc.relation.isversionofjnlvol10en
dc.relation.isversionofjnldate2001
dc.relation.isversionofjnlpages277-289en
dc.relation.isversionofdoihttp://dx.doi.org/10.1051/proc:2001017en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherEDP Sciencesen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record