• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues

Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000), Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues, in Defranceschi, Mireille; Le Bris, Claude, Mathematical models and methods for ab initio quantum chemistry, Springer : Berlin, p. 211-226

View/Open
eigenvalues.PDF (162.7Kb)
Type
Communication / Conférence
Date
2000
Conference title
4th International Conference on Industrial and Applied Mathematics (ICIAM 1999)
Conference date
1999-07
Conference city
Edimbourg
Conference country
Royaume-Uni
Book title
Mathematical models and methods for ab initio quantum chemistry
Book author
Defranceschi, Mireille; Le Bris, Claude
Publisher
Springer
Published in
Berlin
ISBN
3-540-67631
Number of pages
246
Pages
211-226
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Esteban, Maria J. cc
Séré, Eric
Abstract (EN)
The main goal of this paper is to describe some new variational methods for the characterization and computation of the eigenvalues and the eigenstates of Dirac operators. Our methods are all based on exact variational principles, both of min-max and of minimization types. The minimization procedure that we introduce is done in a particular set of functions satisfying a nonlinear constraint. Finally, we present several numerical methods that we have implemented in particular cases, in order to construct approximate solutions of that minimization problem.
Subjects / Keywords
minimization; eigenvalues; Dirac operators

Related items

Showing items related by title and author.

  • Thumbnail
    A variational method for relativistic computations in atomic and molecular physics 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2003) Article accepté pour publication ou publié
  • Thumbnail
    Variational methods in relativistic quantum mechanics 
    Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2008) Article accepté pour publication ou publié
  • Thumbnail
    Computational approaches of relativistic models in quantum chemistry 
    Desclaux, J.P.; Dolbeault, Jean; Esteban, Maria J.; Indelicato, P.; Séré, Eric (2003) Chapitre d'ouvrage
  • Thumbnail
    Corrigendum to: “On the eigenvalues of operators with gaps. Application to Dirac operators” [J. Funct. Anal. 174 (1) (2000) 208–226] 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
  • Thumbnail
    General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators. 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo