• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Information Loss in Coarse-Graining of Stochastic Particle Dynamics

Katsoulakis, Markos A.; Trashorras, José (2006), Information Loss in Coarse-Graining of Stochastic Particle Dynamics, Journal of Statistical Physics, 122, 1, p. 115-135. http://dx.doi.org/10.1007/s10955-005-8063-1

View/Open
2004-59.ps (7.146Mb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Journal of Statistical Physics
Volume
122
Number
1
Publisher
Springer
Pages
115-135
Publication identifier
http://dx.doi.org/10.1007/s10955-005-8063-1
Metadata
Show full item record
Author(s)
Katsoulakis, Markos A.
Trashorras, José
Abstract (EN)
Recently a new class of approximating coarse-grained stochastic processes and associated Monte Carlo algorithms were derived directly from microscopic stochastic lattice models for the adsorption/desorption and diffusion of interacting particles(12,13,15). The resulting hierarchy of stochastic processes is ordered by the level of coarsening in the space/time dimensions and describes mesoscopic scales while retaining a significant amount of microscopic detail on intermolecular forces and particle fluctuations. Here we rigorously compute in terms of specific relative entropy the information loss between non-equilibrium exact and approximating coarse-grained adsorption/desorption lattice dynamics. Our result is an error estimate analogous to rigorous error estimates for finite element/finite difference approximations of Partial Differential Equations. We prove this error to be small as long as the level of coarsening is small compared to the range of interaction of the microscopic model. This result gives a first mathematical reasoning for the parameter regimes for which approximating coarse-grained Monte Carlo algorithms are expected to give errors within a given tolerance.
Subjects / Keywords
Coarse-grained Monte Carlo methods; Markov processes; Interacting particle systems; Information loss

Related items

Showing items related by title and author.

  • Thumbnail
    From mesoscale back to microscale: Reconstruction schemes for coarse-grained stochastic lattice systems 
    Tsagkarogiannis, Dimitrios; Trashorras, José (2010) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear Stability in Lp for a Confined System of Charged Particles 
    Caceres, Maria J.; Dolbeault, Jean; Carrillo, José A. (2003) Article accepté pour publication ou publié
  • Thumbnail
    Using informative priors in the estimation of mixtures over time with application to aerosol particle size distributions 
    Hussein, Tareq; Rousseau, Judith; Alston, Clair; Mengersen, Kerrie; Wraith, Darren (2014) Article accepté pour publication ou publié
  • Thumbnail
    Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research 
    Lederman, Claudia; Jüngel, Ansgar; Arnold, Anton; Carrillo, José A.; Desvillettes, Laurent; Dolbeault, Jean; Markowich, Peter; Toscani, Giuseppe; Villani, Cédric (2004) Article accepté pour publication ou publié
  • Thumbnail
    Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research 
    Arnold, Anton; Carrillo, José Antonio; Desvillettes, Laurent; Dolbeault, Jean; Jüngel, Ansgar; Lederman, Claudia; Markowich, Peter; Toscani, Giuseppe; Villani, Cédric (2004) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo