• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Periodic homogenization of monotone multivalued operators

Thumbnail
View/Open
2006-12.pdf (352.9Kb)
Date
2007
Dewey
Analyse
Sujet
Homogenization; monotone graphs
Journal issue
Nonlinear Analysis: Theory, Methods & Applications
Volume
67
Number
12
Publication date
2007
Article pages
3217-3239
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.na.2006.10.007
URI
https://basepub.dauphine.fr/handle/123456789/6681
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Van Schaftingen, Jean
Meunier, Nicolas
Damlamian, Alain
Type
Article accepté pour publication ou publié
Abstract (EN)
Using the unfolding method of Cioranescu, Damlamian and Griso [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris Math. 335 (1) (2002) 99–104], we study the homogenization for equations of the form View the MathML source−divdε=f, with (∇uε(x),dε(x))∈Aε(x)(∇uε(x),dε(x))∈Aε(x) and where AεAε is a function whose values are maximal monotone graphs. Under appropriate growth and coercivity assumptions, if the sequence of unfolded maximal monotone graphs (Tε(Aε)(x,y))(Tε(Aε)(x,y)) converges in the graphical sense to a maximal monotone graph B(x,y)B(x,y) for almost every (x,y)∈Ω×Y(x,y)∈Ω×Y, as ε→0ε→0, then (uε,dε)(uε,dε) converges weakly in a suitable Sobolev space to a solution (u0,d0)(u0,d0) of the problem View the MathML source−divd0=f, with (∇u0(x),d0(x))∈A(x)(∇u0(x),d0(x))∈A(x) and AA satisfies the same assumptions as AεAε. This result includes the case where Aε(x)Aε(x) is a monotone continuous function for almost every x∈Ωx∈Ω.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.