• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis

Biler, Piotr; Corrias, Lucilla; Dolbeault, Jean (2011), Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis, Journal of Mathematical Biology, 63, 1, p. 1-32. http://dx.doi.org/10.1007/s00285-010-0357-5

View/Open
large_mass.PDF (306.9Kb)
Type
Article accepté pour publication ou publié
Date
2011
Journal name
Journal of Mathematical Biology
Volume
63
Number
1
Publisher
Springer
Pages
1-32
Publication identifier
http://dx.doi.org/10.1007/s00285-010-0357-5
Metadata
Show full item record
Author(s)
Biler, Piotr
Corrias, Lucilla
Dolbeault, Jean cc
Abstract (EN)
In two space dimensions, the parabolic–parabolic Keller–Segel system shares many properties with the parabolic–elliptic Keller–Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M c . However, this threshold is not as clear in the parabolic–parabolic case as it is in the parabolic–elliptic case, in which solutions with mass above M c always blow up. Here we study forward self-similar solutions of the parabolic–parabolic Keller–Segel system and prove that, in some cases, such solutions globally exist even if their total mass is above M c , which is forbidden in the parabolic–elliptic case.
Subjects / Keywords
Keller–Segel model; Chemotaxis; Self-similar solution; Nonlocal parabolic equations; Critical mass; Existence; Blowup

Related items

Showing items related by title and author.

  • Thumbnail
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane 
    Campos Serrano, Juan; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    Optimal critical mass in the two dimensional Keller–Segel model in R2 
    Dolbeault, Jean; Perthame, Benoît (2004) Article accepté pour publication ou publié
  • Thumbnail
    Stationary solutions of Keller-Segel type crowd motion and herding models: multiplicity and dynamical stability 
    Dolbeault, Jean; Jankowiak, Gaspard; Markowich, Peter (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo