• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities

Dolbeault, Jean; Gentil, Ivan; Jüngel, Ansgar (2006), A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities, Communications in Mathematical Sciences, 4, 2, p. 275-290

View/Open
logarithmic.pdf (216.6Kb)
Type
Article accepté pour publication ou publié
Date
2006
Journal name
Communications in Mathematical Sciences
Volume
4
Number
2
Publisher
International Press
Pages
275-290
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Gentil, Ivan
Jüngel, Ansgar
Abstract (EN)
A logarithmic fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions and some regularity results are shown. Furthermore, we prove that the solution converges exponentially fast to its mean value in the "entropy norm" and in the Fisher information, using a new optimal logarithmic Sobolev inequality for higher derivatives. In particular, the rate is independent of the solution and the constant depends only on the initial value of the entropy.
Subjects / Keywords
Cauchy problem; higher-order parabolic equations; existence of global-in-time solutions; long-time behavior; Fisher information; entropy{entropy production method; logarithmic Sobolev inequality; Poincaré inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations 
    Juengel, Ansgar; Gentil, Ivan; Dolbeault, Jean; Carrillo, José A. (2006) Article accepté pour publication ou publié
  • Thumbnail
    Logarithmic Sobolev inequalities: regularizing effect of Lévy operators and asymptotic convergence in the Lévy-Fokker-Planck equation 
    Gentil, Ivan; Imbert, Cyril (2009) Article accepté pour publication ou publié
  • Thumbnail
    Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality 
    Del Pino, Manuel; Dolbeault, Jean; Gentil, Ivan (2004) Article accepté pour publication ou publié
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Modified logarithmic Sobolev inequalities and transportation inequalities 
    Gentil, Ivan; Guillin, Arnaud; Miclo, Laurent (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo