Large deviation probabilities in estimation of Poisson random measures
Florens, Danielle; Pham, Huyen (1998), Large deviation probabilities in estimation of Poisson random measures, Stochastic Processes and their Applications, 76, 1, p. 117-139. http://dx.doi.org/10.1016/S0304-4149(98)00005-2
Type
Article accepté pour publication ou publiéDate
1998Journal name
Stochastic Processes and their ApplicationsVolume
76Number
1Publisher
Elsevier
Pages
117-139
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider the parametric estimation problem of intensity measure of a Poisson random measure. We prove large deviation principles for Poisson random measures and an implicit contraction principle. These results are applied to provide a large deviation principle for a maximum likelihood estimator in a parametric statistical model and to explicitly identify the rate function.Subjects / Keywords
Large deviations; Poisson random measures; Maximum likelihood estimatorRelated items
Showing items related by title and author.
-
Pham, Huyen; Florens, Danielle (1999) Article accepté pour publication ou publié
-
Pham, Huyen; Florens, Danielle (1999) Article accepté pour publication ou publié
-
Butez, Raphaël (2016) Article accepté pour publication ou publié
-
Florens, Danielle (1999) Article accepté pour publication ou publié
-
Vargas, Vincent; Rhodes, Rémi; Lacoin, Hubert (2014) Document de travail / Working paper