Show simple item record

dc.contributor.authorCornaz, Denis
dc.date.accessioned2011-06-17T13:37:22Z
dc.date.available2011-06-17T13:37:22Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6531
dc.language.isoenen
dc.subjectMin-max equalityen
dc.subjectMinimum multicuten
dc.subjectMaximum integer multiflowen
dc.subject.ddc511en
dc.titleMax-multiflow/min-multicut for G+H series-parallelen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe give a new characterization of series-parallel graphs which implies that the maximum integer multiflow is equal to the minimum capacity multicut if G + H is series-parallel, where G + H denotes the union of the support graph G and the demand graph H. We investigate the difference between a result of the type ‘‘the cut-condition is sufficient for the existence of a multiflow in some class’’ and a result of the type ‘‘max- multiflow = min-multicut for some class’’.en
dc.relation.isversionofjnlnameDiscrete Mathematics
dc.relation.isversionofjnlvol311en
dc.relation.isversionofjnlissue17en
dc.relation.isversionofjnldate2011
dc.relation.isversionofjnlpages1957-1967en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.disc.2011.05.025en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelPrincipes généraux des mathématiquesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record