• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Max-multiflow/min-multicut for G+H series-parallel

Cornaz, Denis (2011), Max-multiflow/min-multicut for G+H series-parallel, Discrete Mathematics, 311, 17, p. 1957-1967. http://dx.doi.org/10.1016/j.disc.2011.05.025

Type
Article accepté pour publication ou publié
Date
2011
Journal name
Discrete Mathematics
Volume
311
Number
17
Publisher
Elsevier
Pages
1957-1967
Publication identifier
http://dx.doi.org/10.1016/j.disc.2011.05.025
Metadata
Show full item record
Author(s)
Cornaz, Denis
Abstract (EN)
We give a new characterization of series-parallel graphs which implies that the maximum integer multiflow is equal to the minimum capacity multicut if G + H is series-parallel, where G + H denotes the union of the support graph G and the demand graph H. We investigate the difference between a result of the type ‘‘the cut-condition is sufficient for the existence of a multiflow in some class’’ and a result of the type ‘‘max- multiflow = min-multicut for some class’’.
Subjects / Keywords
Min-max equality; Minimum multicut; Maximum integer multiflow

Related items

Showing items related by title and author.

  • Thumbnail
    Trader multiflow and box-TDI systems in series-parallel graphs 
    Cornaz, Denis; Grappe, Roland; Lacroix, Mathieu (2019) Article accepté pour publication ou publié
  • Thumbnail
    A max-min principle for the ground state of the Dirac-Fock functional 
    Séré, Eric; Esteban, Maria J. (2002) Communication / Conférence
  • Thumbnail
    Domains for Dirac-Coulomb min-max levels 
    Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2019) Article accepté pour publication ou publié
  • Thumbnail
    Pseudo-polynomial algorithms for min-max and min-max regret problems 
    Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Communication / Conférence
  • Thumbnail
    Dirac-Coulomb operators with general charge distribution I. Distinguished extension and min-max formulas 
    Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo