• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A variational method for relativistic computations in atomic and molecular physics

Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2003), A variational method for relativistic computations in atomic and molecular physics, International Journal of Quantum Chemistry, 93, 3, p. 149-155. http://dx.doi.org/10.1002/qua.10549

View/Open
2002-8.ps.gz (439.1Kb)
Type
Article accepté pour publication ou publié
Date
2003
Journal name
International Journal of Quantum Chemistry
Volume
93
Number
3
Publisher
Wiley
Pages
149-155
Publication identifier
http://dx.doi.org/10.1002/qua.10549
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Esteban, Maria J. cc
Séré, Eric
Abstract (EN)
This article is devoted to a two-spinor characterization of energy levels of Dirac operators based at a theoretical level on a rigorous variational method, with applications in atomic and molecular physics. This provides a numerical method that is free of the numerical drawbacks often present in discretized relativistic approaches. It is moreover independent of the geometry and monotone: Eigenvalues are approximated from above. We illustrate our numerical approach by the computation of the ground state in atomic and diatomic configurations using B-splines.
Subjects / Keywords
quantum chemistry; relativistic quantum mechanics; relativistic models for atoms and molecules; computational methods; ab initio methods; basis sets; B-splines; Dirac operators; effective Hamiltonians; Variational methods; min–max; minimization; continuous spectrum; eigenvalues; Rayleigh–Ritz technique; minimization; variational collapse; spurious states; two components spinors

Related items

Showing items related by title and author.

  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    A short review on computational issues arising in relativistic atomic and molecular physics 
    Esteban, Maria J. (2007) Communication / Conférence
  • Thumbnail
    Mathematical questions about the computation of eigenvalues of Dirac operators with critical potentials in atomic and molecular physics 
    Esteban, Maria J. (2020) Article accepté pour publication ou publié
  • Thumbnail
    Variational methods in relativistic quantum mechanics 
    Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2008) Article accepté pour publication ou publié
  • Thumbnail
    Computational approaches of relativistic models in quantum chemistry 
    Desclaux, J.P.; Dolbeault, Jean; Esteban, Maria J.; Indelicato, P.; Séré, Eric (2003) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo