A variational method for relativistic computations in atomic and molecular physics
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2003), A variational method for relativistic computations in atomic and molecular physics, International Journal of Quantum Chemistry, 93, 3, p. 149-155. http://dx.doi.org/10.1002/qua.10549
View/ Open
Type
Article accepté pour publication ou publiéDate
2003Journal name
International Journal of Quantum ChemistryVolume
93Number
3Publisher
Wiley
Pages
149-155
Publication identifier
Metadata
Show full item recordAbstract (EN)
This article is devoted to a two-spinor characterization of energy levels of Dirac operators based at a theoretical level on a rigorous variational method, with applications in atomic and molecular physics. This provides a numerical method that is free of the numerical drawbacks often present in discretized relativistic approaches. It is moreover independent of the geometry and monotone: Eigenvalues are approximated from above. We illustrate our numerical approach by the computation of the ground state in atomic and diatomic configurations using B-splines.Subjects / Keywords
quantum chemistry; relativistic quantum mechanics; relativistic models for atoms and molecules; computational methods; ab initio methods; basis sets; B-splines; Dirac operators; effective Hamiltonians; Variational methods; min–max; minimization; continuous spectrum; eigenvalues; Rayleigh–Ritz technique; minimization; variational collapse; spurious states; two components spinorsRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
-
Esteban, Maria J. (2007) Communication / Conférence
-
Esteban, Maria J. (2020) Article accepté pour publication ou publié
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2008) Article accepté pour publication ou publié
-
Desclaux, J.P.; Dolbeault, Jean; Esteban, Maria J.; Indelicato, P.; Séré, Eric (2003) Chapitre d'ouvrage