• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Symmetry and non-uniformly elliptic operators

Dolbeault, Jean; Felmer, Patricio; Monneau, Régis (2005), Symmetry and non-uniformly elliptic operators, Differential and Integral Equations, 18, 2, p. 141-154

View/Open
2004-25.pdf (169.9Kb)
2004-25.ps (385.9Kb)
Type
Article accepté pour publication ou publié
Date
2005
Journal name
Differential and Integral Equations
Volume
18
Number
2
Publisher
Khayyam Publishing Company
Pages
141-154
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
Felmer, Patricio
Monneau, Régis
Abstract (EN)
The goal of this paper is to study the symmetry properties of nonnegative solutions of elliptic equations involving a non uniformly elliptic operator. We consider on a ball the solutions of Delta pu + f(u) = 0 with zero Dirichlet boundary conditions, for p > 2, where Delta p is the p-Laplace operator and f a continuous nonlinearity. The main tools are a comparison result for weak solutions and a local moving plane method which has been previously used in the p = 2 case. We prove local and global symmetry results when u is of class C1; for large enough, under some additional technical assumptions.
Subjects / Keywords
Elliptic equations; non uniformly elliptic operators; p-Laplace operator; scalar field equations; monotonicity; symmetry; local symmetry; positivity; non Lipschitz nonlinearities; comparison techniques; weak solutions; maximum principle; Hopf 's lemma; Local moving plane method

Related items

Showing items related by title and author.

  • Thumbnail
    Symmetry And Monotonicity Properties For Positive Solutions Of Semi-Linear Elliptic PDE's 
    Dolbeault, Jean; Felmer, Patricio (2000) Article accepté pour publication ou publié
  • Thumbnail
    Large critical exponents for some second order uniformly elliptic operators. 
    Quaas, Alexander; Felmer, Patricio; Esteban, Maria J. (2007) Article accepté pour publication ou publié
  • Thumbnail
    Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case 
    Felmer, Patricio; Dolbeault, Jean (2004) Article accepté pour publication ou publié
  • Thumbnail
    Compactness properties for trace-class operators and applications to quantum mechanics 
    Mayorga-Zambrano, Juan; Felmer, Patricio; Dolbeault, Jean (2008) Article accepté pour publication ou publié
  • Thumbnail
    Convexity estimates for nonlinear elliptic equations and application to free boundary problems 
    Dolbeault, Jean; Monneau, Régis (2002) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo