
Symmetry and non-uniformly elliptic operators
Dolbeault, Jean; Felmer, Patricio; Monneau, Régis (2005), Symmetry and non-uniformly elliptic operators, Differential and Integral Equations, 18, 2, p. 141-154
Type
Article accepté pour publication ou publiéDate
2005Journal name
Differential and Integral EquationsVolume
18Number
2Publisher
Khayyam Publishing Company
Pages
141-154
Metadata
Show full item recordAbstract (EN)
The goal of this paper is to study the symmetry properties of nonnegative solutions of elliptic equations involving a non uniformly elliptic operator. We consider on a ball the solutions of Delta pu + f(u) = 0 with zero Dirichlet boundary conditions, for p > 2, where Delta p is the p-Laplace operator and f a continuous nonlinearity. The main tools are a comparison result for weak solutions and a local moving plane method which has been previously used in the p = 2 case. We prove local and global symmetry results when u is of class C1; for large enough, under some additional technical assumptions.Subjects / Keywords
Elliptic equations; non uniformly elliptic operators; p-Laplace operator; scalar field equations; monotonicity; symmetry; local symmetry; positivity; non Lipschitz nonlinearities; comparison techniques; weak solutions; maximum principle; Hopf 's lemma; Local moving plane methodRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Felmer, Patricio (2000) Article accepté pour publication ou publié
-
Quaas, Alexander; Felmer, Patricio; Esteban, Maria J. (2007) Article accepté pour publication ou publié
-
Felmer, Patricio; Dolbeault, Jean (2004) Article accepté pour publication ou publié
-
Mayorga-Zambrano, Juan; Felmer, Patricio; Dolbeault, Jean (2008) Article accepté pour publication ou publié
-
Dolbeault, Jean; Monneau, Régis (2002) Article accepté pour publication ou publié