Show simple item record

dc.contributor.authorMoussafir, Jacques-Olivier
dc.date.accessioned2011-06-09T11:10:27Z
dc.date.available2011-06-09T11:10:27Z
dc.date.issued2001
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6471
dc.language.isoenen
dc.subjectQuaternionsen
dc.subjectIsometriesen
dc.subjectTransformationsen
dc.subjectDifferential geometryen
dc.subject.ddc516en
dc.titleQuaternionic linear fractional transformations and direct isometries of H5en
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn the complex plane, an even number of reflection through lines or circles can be expressed in complex coordinates as a linear fractional transformation w=(az+b)/(cz+d) with Image and ad−bc≠0. This also holds in Image : an even number of reflections through spheres or planes correspond to transformations k=(ah+b)(ch+d)−1 with Image . A theorem by Poincaré about direct isometries of hyperbolic spaces may therefore be rephrased: direct isometries of H5 correspond to quaternionic linear fractional transformations.en
dc.relation.isversionofjnlnameJournal of Geometry and Physics
dc.relation.isversionofjnlvol37en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2001
dc.relation.isversionofjnlpages183-189en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/S0393-0440(99)00052-2en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelGéométrieen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record