
A numerical approach to variational problems subject to convexity constraint
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001), A numerical approach to variational problems subject to convexity constraint, Numerische Mathematik, 88, 2, p. 299-318. http://dx.doi.org/10.1007/PL00005446
View/ Open
Type
Article accepté pour publication ou publiéDate
2001Journal name
Numerische MathematikVolume
88Number
2Publisher
Springer
Pages
299-318
Publication identifier
Metadata
Show full item recordAbstract (EN)
We describe an algorithm to approximate the minimizer of an elliptic functional in the form R Ω j(x, u,∇u) on the set C of convex functions u in an appropriate functional space X. Such problems arise for instance in mathematical economics [4]. A special case gives the convex envelope u∗∗ 0 of a given function u0. Let (Tn) be any quasiuniform sequence of meshes whose diameter goes to zero, and In the corresponding affine interpolation operators. We prove that the minimizer over C is the limit of the sequence (un), where un minimizes the functional over In(C). We give an implementable characterization of In(C). Then the finite dimensional problem turns out to be a minimization problem with linear constraints.Subjects / Keywords
Linear constraints; Minimization problems; convexity constraintRelated items
Showing items related by title and author.
-
Lachand-Robert, Thomas; Carlier, Guillaume (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dupuis, Xavier (2017) Article accepté pour publication ou publié
-
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Radice, Teresa (2019) Article accepté pour publication ou publié
-
Peyré, Gabriel; Ionescu, Ioan; Comte, Myriam; Carlier, Guillaume (2011) Article accepté pour publication ou publié