Show simple item record

dc.contributor.authorChiappori, Pierre-André
dc.contributor.authorEkeland, Ivar
dc.date.accessioned2011-06-06T09:23:55Z
dc.date.available2011-06-06T09:23:55Z
dc.date.issued1999
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6427
dc.language.isoenen
dc.subjectMicroeconomicsen
dc.subjectconsumer theoryen
dc.subjectaggregationen
dc.subjectmarket demanden
dc.subject.ddc519en
dc.subject.classificationjelD11en
dc.titleAggregation and Market Demand: An Exterior Differential Calculus Viewpointen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe analyze under which conditions a given vector field can be disaggregated as a linear combination of gradients. This problem is typical of aggregation theory, as illustrated by the literature on the characterization of aggregate market demand and excess demand. We argue that exterior differential calculus provides very useful tools to address these problems. In particular, we show, using these techniques, that any analytic mapping in Rn satisfying Walras Law can be locally decomposed as the sum of n individual, utility-maximizing market demand functions. In addition, we show that the result holds for arbitrary (price-dependent) income distributions, and that the decomposition can be chosen such that it varies continuously with the mapping. Finally, when income distribution can be freely chosen, then decomposition requires only n/2 agents.en
dc.relation.isversionofjnlnameEconometrica
dc.relation.isversionofjnlvol67en
dc.relation.isversionofjnlissue6en
dc.relation.isversionofjnldate1999
dc.relation.isversionofjnlpages1435-1457en
dc.relation.isversionofdoihttp://dx.doi.org/10.1111/1468-0262.00085en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherWileyen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record