Show simple item record

dc.contributor.authorBiler, Piotr
dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.date.accessioned2011-06-03T13:14:10Z
dc.date.available2011-06-03T13:14:10Z
dc.date.issued2000
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6409
dc.language.isoenen
dc.subjectdrift-diffusion systemsen
dc.subjectasymptotic behavior of solutionsen
dc.subjectlogarithmic Sobolev inequalitiesen
dc.subject.ddc515en
dc.titleLong Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systemsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the convergence rates of solutions to drift-diffusion systems (arising from plasma, semiconductors and electrolytes theories) to their self-similar or steady states. This analysis involves entropy- type Lyapunov functionals and logarithmic Sobolev inequalities.en
dc.relation.isversionofjnlnameAnnales Henri Poincaré
dc.relation.isversionofjnlvol1en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2000
dc.relation.isversionofjnlpages461-472en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s000230050003en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record