dc.contributor.author | Felmer, Patricio | |
dc.contributor.author | Dolbeault, Jean | |
dc.date.accessioned | 2011-05-31T15:36:32Z | |
dc.date.available | 2011-05-31T15:36:32Z | |
dc.date.issued | 2004 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6380 | |
dc.language.iso | en | en |
dc.subject | Dead cores | en |
dc.subject | Cores | en |
dc.subject | Local symmetry | en |
dc.subject | Unique continuation | en |
dc.subject | Hopf's lemma | en |
dc.subject | Maximum principle | en |
dc.subject | Comparison techniques | en |
dc.subject | Non-Lipschitz nonlinearities | en |
dc.subject | Positivity | en |
dc.subject | Symmetry | en |
dc.subject | Monotonicity | en |
dc.subject | Scalar field equations | en |
dc.subject | Elliptic equations | en |
dc.subject.ddc | 515 | en |
dc.title | Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We prove local monotonicity and symmetry properties for nonnegative solutions of scalar field equations with nonlinearities which are not Lipschitz. Our main tools are a local moving plane method and a unique continuation argument. | en |
dc.relation.isversionofjnlname | Nonlinear Analysis: Theory, Methods & Applications | |
dc.relation.isversionofjnlvol | 58 | en |
dc.relation.isversionofjnlissue | 3-4 | en |
dc.relation.isversionofjnldate | 2004 | |
dc.relation.isversionofjnlpages | 299-317 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.na.2004.04.007 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Analyse | en |